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Introduction 

 Artificial neural networks (ANNs) 
are patterned after the structure 
and function of the brain 

 When a neuron fires, it sends an  
electro-chemical signal along its 
axon to the synapses which 
connect it to other neurons 
 If this signal is strong enough, the 

next neuron may also fire, 
resulting in a spreading activation 
pattern 

 The strength of the connections 
between neurons can change over 
time, and this is the basis for 
learning 
 Connections leading to a “good 

answer” are strengthened while 
those leading to a “bad answer” are 
weakened 

 Humans have about 10 billion 
neurons and 60 trillion synapses 
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Introduction 

 Artificial neural networks are patterned after the brain 
 Neurodes (or just nodes) represent neurons 
 Connections represent synapses 
 Weights on the connections change in order to produce learning 
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Introduction 
 Architecture: 

 In most cases, we use a fully 
connected model 

 All neurodes at one layer are 
connected to each of the 
neurodes at the next layer 

 This picture shows a 
fully connected 
model 
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 Each neurode sums the 
input signals coming into it 
 Actually, multiply the connection 

weight and the incoming signal, 
and sum each of these 

 Output or “transfer” 
function could be: 

 Step function  

 Sign function 

 Sigmoid function 

 Linear function 
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 Transfer functions 

 Step (or sign) function 

 “Hard Limiter” 

 Linear (ramping) function 

 Sigmoid function 

 Most common because it’s 
continuous 

 Usually used in 
backpropagation networks 
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Perceptron 
 With two inputs, the 

decision boundary takes on 
the form of a straight line 

 So if you had a problem like 
this one, the perceptron 
could learn to solve it 

 “Linearly separable” (which 
extends beyond two 
dimensions) 
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 However, even very simple 
problems that are not 
linearly separable cannot be 
solved by a perceptron 

 e.g. Exclusive Or (XOR) 
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Multilayer 
Networks 

 Perceptron can’t solve 
problems that are not 
linearly separable, but a 
multilayer network can 

 A multilayer network has 
one or more hidden layers 
between the input and 
output layers 

 Usually a feed-forward, 
backpropagation 
architecture 
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Multilayer 
Networks 

 Feed Forward: 

 Input to neuron is still  
𝑥𝑗 =  𝑥𝑖𝑤𝑖,𝑗

𝑛
𝑖=1  

 n= number of connected 
inputs  

 xi = the input on connection i  

 wi,j = the weight on the 
connection between neurode i 
and neurode j 

 Transfer function is sigmoid

   𝑦𝑗 =
1

1+𝑒
−𝑥𝑗

 

 This bounds the output 
between 0 and 1 and is 
continuously differentiable 
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 Feed forward example 

 

 

Multilayer 
Networks
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 Feed forward example 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Input to node j =  𝑤𝑛,𝑗
3
𝑛=1 𝑜𝑛 where on = output of node n 

 Input to node j = w1j*1.0 + w2j*0.4 + w3j*0.7 
 = 0.2*1.0 + 0.3*0.4 + -0.1*0.7 
 =0.2 + 0.12 + -0.07 = 0.25 

Multilayer 
Networks
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 Feed forward example 

 

 

 

 

 

 

 

 

 

 

 Output from node j = 
1

1+𝑒−𝑖𝑛𝑝𝑢𝑡
 = 0.562177 

Multilayer 
Networks

14 

1 

2 

3 

j 

i 

k 

1.0 

0.4 

0.7 



 Feed forward example 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Input to node j = 0.25, Output from node j = 0.562 

 Input to node i = 0.20, Output from node i = 0.550 

 Input to node k = 0.331, Output from node k = 0.582 

Multilayer 
Networks
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Multilayer 
Networks 

 Backpropagation: 
 Error at node j: 

 𝐸𝑟𝑟𝑜𝑟 𝑗 =
( 𝐸𝑟𝑟𝑜𝑟 𝑘 ∗ 𝑤𝑗,𝑘) ∗ 𝑓′(𝑥𝑗)𝑘  

 Error(k) = output error at node k 

 wjk = weight of connection 
between nodes j and k 

 f’(x) = Oj (1-Oj) 

   Oj = output at node j 
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Multilayer 
Networks 

Backpropagation: 
 The Delta Rule: 

 wjk(new) = wjk(current) + Δwjk 

 Δwjk = r * Error(k) * Oj 

  r = learning rate, 0 < r < 1 

  Error(k) = error at node k 

  Oj = output of node j 
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Multilayer 
Networks 

Backpropagation Example: 
 𝐸𝑟𝑟𝑜𝑟 𝑗 = ( 𝐸𝑟𝑟𝑜𝑟 𝑘 ∗ 𝑤𝑗,𝑘) ∗ 𝑓′(𝑥𝑗)𝑘  

 Let’s say we want 0.599 as our output, so Error(k) is 0.017 

 Error(j) = 0.017 * 0.10 * 0.25 = 0.00042 

 wjk(new) = wjk(current) + Δwjk 

 Δwjk = r * Error(k) * Oj 

 Let’s say our learning rate, r = 0.5 
 Δwjk = 0.5 * 0.017 * 0.562 = 0.0048 

 wjk(new) = 0.10 + 0.0048 = 0.1048 
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Steps in 
Training a 
Network: 
 

 Initialization 
 Randomly initialize weights 

between [-0.5, 0.5] 

 Activation 
 Apply inputs x1 … xn and 

calculate the output 
 First, summation function 
 Then, transfer function – step 

function or sign function for 
perceptron, sigmoid most likely 
for multilayer 

 Weight Adjustment 
 If the output is not what was 

desired, go back and adjust 
each weight 
 First, error function 
 Then, Delta rule 

 Iterate until the error rate is 
acceptable (or we reach 
some other stopping 
condition) 
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Kohonen Self-
Organizing 

Maps

 Unsupervised (!) neural 
network 

 Competitive learning 

 Only a single output node is 
active for a given input 

 Winner takes all 

 Kohonen’s “principle of 
topographic map formation” 

 The spatial location of an 
active output neurode in the 
topographic map 
corresponds to a specific 
feature of the input pattern 
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Kohonen Self-
Organizing 
Maps 

 Architecture / Behavior 

 Two layers – input and 
output (Kohonen layer) 

 Many more nodes in output 
layer than in input 

 Input layer is fully connected 
to the output layer 

 One input node for each 
input feature (attribute) 
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Kohonen Self-
Organizing 
Maps 

 Training / Learning 

 Input instances are presented to 
the input layer and fed through to 
the output layer 

 The single output node whose 
weights most closely match those 
of the input is the one that “wins” 

 The winner is rewarded by having 
its weights changed to match the 
input even more closely 

 Initially, those output neurodes 
near the winner are also  
rewarded 
 Size of “neighborhood” decreased as 

number of iterations increase 
 Mexican hat function 
 Neighborhood defined by city block 

or Euclidean distance 

 Output nodes winning the most 
instances during the last pass of 
the data through the network are 
saved 
 The number of output nodes 

eventually saved corresponds to the 
number of “classes” found by the 
network 
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General 
Considerations 

(for all ANNs)

 Training and Testing 

 “Epoch” is one pass of all of 
the training instances through 
the neural network 

 Rule of thumb in supervised 
learning is to use 80% of the 
data for training and 20% for 
testing 

 Can apply similar rule to 
Kohonen maps 

 Build clustering / classification 
network with 80% of cases 
and then see how remaining 
20% are classified 

 Usually use root mean squared 
(rms) error but could also use: 

 Absolute error 

 Mean squared error 
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General 
Considerations 
(for all ANNs) 

 Conditioning the Input 

 Input must be numeric 

 Works best if in the range of 
[0, 1] 
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General 
Considerations 
(for all ANNs) 

 Categorical Input Data: 

 Divide interval range into 
equal sized units 

 red -> 0.00 

 green -> 0.33 

 blue -> 0.67 

 yellow -> 1.00 

  Pitfall here is it implies 
some sort of ordering on the 
data that is just not true  
(red < green?) 

 Use additional input nodes 

 red -> 0, 0 

 green -> 0, 1 

 blue -> 1, 0 

 yellow -> 1, 1 

 

25 



General 
Considerations 
(for all ANNs) 

 Numeric Input Data: 

 Normalize into [0, 1] range 

  new_value =  
 (original_value – min)/(max – min) 

 

 Output Strategies 

 Reverse numeric range to scale 
output to original (non-normalized) 
input 
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General 
Considerations 
(for all ANNs) 

 Architecture 

 Input Layer 

 Number of nodes is equal to 
number of inputs 

 But, may vary these to get at 
your data better, particularly 
categorical data 
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General 
Considerations 
(for all ANNs) 

 Architecture 
 Hidden Layers 

 Need to experiment with 
number of layers and number of 
nodes in each layer 

 Best is to use the least of each 
and still get convergence, but 
you need to figure out what 
“least” is 

 Too many nodes/layers, network 
will learn training data perfectly 

 Memorizes the training 
examples and doesn’t 
generalize 

 Overtraining 

 Does poorly on test data 

 Too few, won’t reach 
convergence 

 Can get oscillatory behavior 
on weight adjustments 
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General 
Considerations 
(for all ANNs) 

Architecture 
 Output Layer 

 Depends on what you want 
from the output 

 May choose to add more 
nodes for categorical output 
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