














Introduction 

 Artificial neural networks (ANNs) 
are patterned after the structure 
and function of the brain 

 When a neuron fires, it sends an  
electro-chemical signal along its 
axon to the synapses which 
connect it to other neurons 
 If this signal is strong enough, the 

next neuron may also fire, 
resulting in a spreading activation 
pattern 

 The strength of the connections 
between neurons can change over 
time, and this is the basis for 
learning 
 Connections leading to a “good 

answer” are strengthened while 
those leading to a “bad answer” are 
weakened 

 Humans have about 10 billion 
neurons and 60 trillion synapses 
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Introduction 

 Artificial neural networks are patterned after the brain 
 Neurodes (or just nodes) represent neurons 
 Connections represent synapses 
 Weights on the connections change in order to produce learning 
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Introduction 
 Architecture: 

 In most cases, we use a fully 
connected model 

 All neurodes at one layer are 
connected to each of the 
neurodes at the next layer 

 This picture shows a 
fully connected 
model 
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 Each neurode sums the 
input signals coming into it 
 Actually, multiply the connection 

weight and the incoming signal, 
and sum each of these 

 Output or “transfer” 
function could be: 

 Step function  

 Sign function 

 Sigmoid function 

 Linear function 
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 Transfer functions 

 Step (or sign) function 

 “Hard Limiter” 

 Linear (ramping) function 

 Sigmoid function 

 Most common because it’s 
continuous 

 Usually used in 
backpropagation networks 
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Perceptron 
 With two inputs, the 

decision boundary takes on 
the form of a straight line 

 So if you had a problem like 
this one, the perceptron 
could learn to solve it 

 “Linearly separable” (which 
extends beyond two 
dimensions) 
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 However, even very simple 
problems that are not 
linearly separable cannot be 
solved by a perceptron 

 e.g. Exclusive Or (XOR) 
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Multilayer 
Networks 

 Perceptron can’t solve 
problems that are not 
linearly separable, but a 
multilayer network can 

 A multilayer network has 
one or more hidden layers 
between the input and 
output layers 

 Usually a feed-forward, 
backpropagation 
architecture 
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Multilayer 
Networks 

 Feed Forward: 

 Input to neuron is still  
𝑥𝑗 =  𝑥𝑖𝑤𝑖,𝑗

𝑛
𝑖=1  

 n= number of connected 
inputs  

 xi = the input on connection i  

 wi,j = the weight on the 
connection between neurode i 
and neurode j 

 Transfer function is sigmoid

   𝑦𝑗 =
1

1+𝑒
−𝑥𝑗

 

 This bounds the output 
between 0 and 1 and is 
continuously differentiable 
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 Feed forward example 

 

 

Multilayer 
Networks
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 Feed forward example 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Input to node j =  𝑤𝑛,𝑗
3
𝑛=1 𝑜𝑛 where on = output of node n 

 Input to node j = w1j*1.0 + w2j*0.4 + w3j*0.7 
 = 0.2*1.0 + 0.3*0.4 + -0.1*0.7 
 =0.2 + 0.12 + -0.07 = 0.25 

Multilayer 
Networks
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 Feed forward example 

 

 

 

 

 

 

 

 

 

 

 Output from node j = 
1

1+𝑒−𝑖𝑛𝑝𝑢𝑡
 = 0.562177 

Multilayer 
Networks
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 Input to node j = 0.25, Output from node j = 0.562 

 Input to node i = 0.20, Output from node i = 0.550 

 Input to node k = 0.331, Output from node k = 0.582 

Multilayer 
Networks
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Multilayer 
Networks 

 Backpropagation: 
 Error at node j: 

 𝐸𝑟𝑟𝑜𝑟 𝑗 =
( 𝐸𝑟𝑟𝑜𝑟 𝑘 ∗ 𝑤𝑗,𝑘) ∗ 𝑓′(𝑥𝑗)𝑘  

 Error(k) = output error at node k 

 wjk = weight of connection 
between nodes j and k 

 f’(x) = Oj (1-Oj) 

   Oj = output at node j 
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Multilayer 
Networks 

Backpropagation: 
 The Delta Rule: 

 wjk(new) = wjk(current) + Δwjk 

 Δwjk = r * Error(k) * Oj 

  r = learning rate, 0 < r < 1 

  Error(k) = error at node k 

  Oj = output of node j 
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Multilayer 
Networks 

Backpropagation Example: 
 𝐸𝑟𝑟𝑜𝑟 𝑗 = ( 𝐸𝑟𝑟𝑜𝑟 𝑘 ∗ 𝑤𝑗,𝑘) ∗ 𝑓′(𝑥𝑗)𝑘  

 Let’s say we want 0.599 as our output, so Error(k) is 0.017 

 Error(j) = 0.017 * 0.10 * 0.25 = 0.00042 

 wjk(new) = wjk(current) + Δwjk 

 Δwjk = r * Error(k) * Oj 

 Let’s say our learning rate, r = 0.5 
 Δwjk = 0.5 * 0.017 * 0.562 = 0.0048 

 wjk(new) = 0.10 + 0.0048 = 0.1048 
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Steps in 
Training a 
Network: 
 

 Initialization 
 Randomly initialize weights 

between [-0.5, 0.5] 

 Activation 
 Apply inputs x1 … xn and 

calculate the output 
 First, summation function 
 Then, transfer function – step 

function or sign function for 
perceptron, sigmoid most likely 
for multilayer 

 Weight Adjustment 
 If the output is not what was 

desired, go back and adjust 
each weight 
 First, error function 
 Then, Delta rule 

 Iterate until the error rate is 
acceptable (or we reach 
some other stopping 
condition) 
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Kohonen Self-
Organizing 

Maps

 Unsupervised (!) neural 
network 

 Competitive learning 

 Only a single output node is 
active for a given input 

 Winner takes all 

 Kohonen’s “principle of 
topographic map formation” 

 The spatial location of an 
active output neurode in the 
topographic map 
corresponds to a specific 
feature of the input pattern 

 

20 



Kohonen Self-
Organizing 
Maps 

 Architecture / Behavior 

 Two layers – input and 
output (Kohonen layer) 

 Many more nodes in output 
layer than in input 

 Input layer is fully connected 
to the output layer 

 One input node for each 
input feature (attribute) 
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Kohonen Self-
Organizing 
Maps 

 Training / Learning 

 Input instances are presented to 
the input layer and fed through to 
the output layer 

 The single output node whose 
weights most closely match those 
of the input is the one that “wins” 

 The winner is rewarded by having 
its weights changed to match the 
input even more closely 

 Initially, those output neurodes 
near the winner are also  
rewarded 
 Size of “neighborhood” decreased as 

number of iterations increase 
 Mexican hat function 
 Neighborhood defined by city block 

or Euclidean distance 

 Output nodes winning the most 
instances during the last pass of 
the data through the network are 
saved 
 The number of output nodes 

eventually saved corresponds to the 
number of “classes” found by the 
network 
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General 
Considerations 

(for all ANNs)

 Training and Testing 

 “Epoch” is one pass of all of 
the training instances through 
the neural network 

 Rule of thumb in supervised 
learning is to use 80% of the 
data for training and 20% for 
testing 

 Can apply similar rule to 
Kohonen maps 

 Build clustering / classification 
network with 80% of cases 
and then see how remaining 
20% are classified 

 Usually use root mean squared 
(rms) error but could also use: 

 Absolute error 

 Mean squared error 
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General 
Considerations 
(for all ANNs) 

 Conditioning the Input 

 Input must be numeric 

 Works best if in the range of 
[0, 1] 
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General 
Considerations 
(for all ANNs) 

 Categorical Input Data: 

 Divide interval range into 
equal sized units 

 red -> 0.00 

 green -> 0.33 

 blue -> 0.67 

 yellow -> 1.00 

  Pitfall here is it implies 
some sort of ordering on the 
data that is just not true  
(red < green?) 

 Use additional input nodes 

 red -> 0, 0 

 green -> 0, 1 

 blue -> 1, 0 

 yellow -> 1, 1 

 

25 



General 
Considerations 
(for all ANNs) 

 Numeric Input Data: 

 Normalize into [0, 1] range 

  new_value =  
 (original_value – min)/(max – min) 

 

 Output Strategies 

 Reverse numeric range to scale 
output to original (non-normalized) 
input 
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General 
Considerations 
(for all ANNs) 

 Architecture 

 Input Layer 

 Number of nodes is equal to 
number of inputs 

 But, may vary these to get at 
your data better, particularly 
categorical data 
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General 
Considerations 
(for all ANNs) 

 Architecture 
 Hidden Layers 

 Need to experiment with 
number of layers and number of 
nodes in each layer 

 Best is to use the least of each 
and still get convergence, but 
you need to figure out what 
“least” is 

 Too many nodes/layers, network 
will learn training data perfectly 

 Memorizes the training 
examples and doesn’t 
generalize 

 Overtraining 

 Does poorly on test data 

 Too few, won’t reach 
convergence 

 Can get oscillatory behavior 
on weight adjustments 
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General 
Considerations 
(for all ANNs) 

Architecture 
 Output Layer 

 Depends on what you want 
from the output 

 May choose to add more 
nodes for categorical output 
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