

Introduction

 Artificial neural networks (ANNs)
are patterned after the structure
and function of the brain

 When a neuron fires, it sends an
electro-chemical signal along its
axon to the synapses which
connect it to other neurons
 If this signal is strong enough, the

next neuron may also fire,
resulting in a spreading activation
pattern

 The strength of the connections
between neurons can change over
time, and this is the basis for
learning
 Connections leading to a “good

answer” are strengthened while
those leading to a “bad answer” are
weakened

 Humans have about 10 billion
neurons and 60 trillion synapses

3

Introduction

 Artificial neural networks are patterned after the brain
 Neurodes (or just nodes) represent neurons
 Connections represent synapses
 Weights on the connections change in order to produce learning

4

Introduction
 Architecture:

 In most cases, we use a fully
connected model

 All neurodes at one layer are
connected to each of the
neurodes at the next layer

 This picture shows a
fully connected
model

5

 Each neurode sums the
input signals coming into it
 Actually, multiply the connection

weight and the incoming signal,
and sum each of these

 Output or “transfer”
function could be:

 Step function

 Sign function

 Sigmoid function

 Linear function

6

 Transfer functions

 Step (or sign) function

 “Hard Limiter”

 Linear (ramping) function

 Sigmoid function

 Most common because it’s
continuous

 Usually used in
backpropagation networks

7

Perceptron
 With two inputs, the

decision boundary takes on
the form of a straight line

 So if you had a problem like
this one, the perceptron
could learn to solve it

 “Linearly separable” (which
extends beyond two
dimensions)

8

 However, even very simple
problems that are not
linearly separable cannot be
solved by a perceptron

 e.g. Exclusive Or (XOR)

9

Multilayer
Networks

 Perceptron can’t solve
problems that are not
linearly separable, but a
multilayer network can

 A multilayer network has
one or more hidden layers
between the input and
output layers

 Usually a feed-forward,
backpropagation
architecture

10

Multilayer
Networks

 Feed Forward:

 Input to neuron is still
𝑥𝑗 = 𝑥𝑖𝑤𝑖,𝑗

𝑛
𝑖=1

 n= number of connected
inputs

 xi = the input on connection i

 wi,j = the weight on the
connection between neurode i
and neurode j

 Transfer function is sigmoid

 𝑦𝑗 =
1

1+𝑒
−𝑥𝑗

 This bounds the output
between 0 and 1 and is
continuously differentiable

11

 Feed forward example

Multilayer
Networks

12

1

2

3

j

i

k

1.0

0.4

0.7

Input
Layer

Hidden
Layer

Output
Layer

 Feed forward example

 Input to node j = 𝑤𝑛,𝑗
3
𝑛=1 𝑜𝑛 where on = output of node n

 Input to node j = w1j*1.0 + w2j*0.4 + w3j*0.7
 = 0.2*1.0 + 0.3*0.4 + -0.1*0.7
 =0.2 + 0.12 + -0.07 = 0.25

Multilayer
Networks

13

1

2

3

j

i

k

1.0

0.4

0.7

 Feed forward example

 Output from node j =
1

1+𝑒−𝑖𝑛𝑝𝑢𝑡
 = 0.562177

Multilayer
Networks

14

1

2

3

j

i

k

1.0

0.4

0.7

 Feed forward example

 Input to node j = 0.25, Output from node j = 0.562

 Input to node i = 0.20, Output from node i = 0.550

 Input to node k = 0.331, Output from node k = 0.582

Multilayer
Networks

15

1

2

3

j

i

k

1.0

0.4

0.7

Multilayer
Networks

 Backpropagation:
 Error at node j:

 𝐸𝑟𝑟𝑜𝑟 𝑗 =
(𝐸𝑟𝑟𝑜𝑟 𝑘 ∗ 𝑤𝑗,𝑘) ∗ 𝑓′(𝑥𝑗)𝑘

 Error(k) = output error at node k

 wjk = weight of connection
between nodes j and k

 f’(x) = Oj (1-Oj)

 Oj = output at node j

16

Multilayer
Networks

Backpropagation:
 The Delta Rule:

 wjk(new) = wjk(current) + Δwjk

 Δwjk = r * Error(k) * Oj

 r = learning rate, 0 < r < 1

 Error(k) = error at node k

 Oj = output of node j

17

Multilayer
Networks

Backpropagation Example:
 𝐸𝑟𝑟𝑜𝑟 𝑗 = (𝐸𝑟𝑟𝑜𝑟 𝑘 ∗ 𝑤𝑗,𝑘) ∗ 𝑓′(𝑥𝑗)𝑘

 Let’s say we want 0.599 as our output, so Error(k) is 0.017

 Error(j) = 0.017 * 0.10 * 0.25 = 0.00042

 wjk(new) = wjk(current) + Δwjk

 Δwjk = r * Error(k) * Oj

 Let’s say our learning rate, r = 0.5
 Δwjk = 0.5 * 0.017 * 0.562 = 0.0048

 wjk(new) = 0.10 + 0.0048 = 0.1048

18

Steps in
Training a
Network:

 Initialization
 Randomly initialize weights

between [-0.5, 0.5]

 Activation
 Apply inputs x1 … xn and

calculate the output
 First, summation function
 Then, transfer function – step

function or sign function for
perceptron, sigmoid most likely
for multilayer

 Weight Adjustment
 If the output is not what was

desired, go back and adjust
each weight
 First, error function
 Then, Delta rule

 Iterate until the error rate is
acceptable (or we reach
some other stopping
condition)

19

Kohonen Self-
Organizing

Maps

 Unsupervised (!) neural
network

 Competitive learning

 Only a single output node is
active for a given input

 Winner takes all

 Kohonen’s “principle of
topographic map formation”

 The spatial location of an
active output neurode in the
topographic map
corresponds to a specific
feature of the input pattern

20

Kohonen Self-
Organizing
Maps

 Architecture / Behavior

 Two layers – input and
output (Kohonen layer)

 Many more nodes in output
layer than in input

 Input layer is fully connected
to the output layer

 One input node for each
input feature (attribute)

21

Kohonen Self-
Organizing
Maps

 Training / Learning

 Input instances are presented to
the input layer and fed through to
the output layer

 The single output node whose
weights most closely match those
of the input is the one that “wins”

 The winner is rewarded by having
its weights changed to match the
input even more closely

 Initially, those output neurodes
near the winner are also
rewarded
 Size of “neighborhood” decreased as

number of iterations increase
 Mexican hat function
 Neighborhood defined by city block

or Euclidean distance

 Output nodes winning the most
instances during the last pass of
the data through the network are
saved
 The number of output nodes

eventually saved corresponds to the
number of “classes” found by the
network

22

General
Considerations

(for all ANNs)

 Training and Testing

 “Epoch” is one pass of all of
the training instances through
the neural network

 Rule of thumb in supervised
learning is to use 80% of the
data for training and 20% for
testing

 Can apply similar rule to
Kohonen maps

 Build clustering / classification
network with 80% of cases
and then see how remaining
20% are classified

 Usually use root mean squared
(rms) error but could also use:

 Absolute error

 Mean squared error

23

General
Considerations
(for all ANNs)

 Conditioning the Input

 Input must be numeric

 Works best if in the range of
[0, 1]

24

General
Considerations
(for all ANNs)

 Categorical Input Data:

 Divide interval range into
equal sized units

 red -> 0.00

 green -> 0.33

 blue -> 0.67

 yellow -> 1.00

 Pitfall here is it implies
some sort of ordering on the
data that is just not true
(red < green?)

 Use additional input nodes

 red -> 0, 0

 green -> 0, 1

 blue -> 1, 0

 yellow -> 1, 1

25

General
Considerations
(for all ANNs)

 Numeric Input Data:

 Normalize into [0, 1] range

 new_value =
 (original_value – min)/(max – min)

 Output Strategies

 Reverse numeric range to scale
output to original (non-normalized)
input

26

General
Considerations
(for all ANNs)

 Architecture

 Input Layer

 Number of nodes is equal to
number of inputs

 But, may vary these to get at
your data better, particularly
categorical data

27

General
Considerations
(for all ANNs)

 Architecture
 Hidden Layers

 Need to experiment with
number of layers and number of
nodes in each layer

 Best is to use the least of each
and still get convergence, but
you need to figure out what
“least” is

 Too many nodes/layers, network
will learn training data perfectly

 Memorizes the training
examples and doesn’t
generalize

 Overtraining

 Does poorly on test data

 Too few, won’t reach
convergence

 Can get oscillatory behavior
on weight adjustments

28

General
Considerations
(for all ANNs)

Architecture
 Output Layer

 Depends on what you want
from the output

 May choose to add more
nodes for categorical output

29

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

